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Abstract

This paper aims at extending the well known critical state con-
cept, associated with quasi-static conditions, by accounting for the role
played by the strain rate when focusing on the steady, simple shear flow
of a dry assembly of identical, elastic spheres. A constitutive model
is proposed and interpreted in the framework of visco-plasticity. The
model includes the granular temperature, a measure of the degree of
agitation of the particles, as an additional state variable. The stresses
of the system are associated with enduring, frictional contacts among
particles involved in force chains and nearly instantaneous collisions.
When the first mechanism prevails, the material behaves like a solid,
and constitutive models of soil mechanics hold; whereas when inelastic
collisions dominate, the material flows like a granular gas and kinetic
theories apply. The predictions of the model for the steady, simple
shear flow of 1 mm sand are discussed. At large values of the nor-
mal stress and small values of the shear rate, the theory predicts a
strain rate softening that can have important implications e.g. on the
evolution of landslides.

1 Introduction

Since the pioneering works of Roscoe et al. (1958) and Schofield and Wroth
(1968), the critical state concept for granular materials, like sands and grav-
els, has been introduced to describe the mechanical behavior of granular
materials under evolving quasi-static conditions. Experimental (especially
using strain controlled triaxial tests, CITATION) and theoretical investiga-
tions (Been and Jefferies, 1986; Gajo and Muir Wood, 1999) have been per-
formed, also accounting for peculiar mechanical processes like grain crushing
(Pestana and Whittle, 1995) and grain segregation (CITATION). However,
the time factor and the role of the strain rate have received much less at-
tention by the Geotechnical community (di Prisco and Imposimato, 1996;
Benedetto and Tatsuoka, 1997; di Prisco et al., 2000).
On the contrary, the most of works published within the granular flow

1



community (e.g., see Goldhirsch, 2003) deals with the rheology of granu-
lar materials at large strain rates and low to moderate concentration, far
from the quasi-static conditions, and determined using simple shear tests
(rheometers) under steady conditions. Within the framework of continuum
mechanics, the granular temperature, defined as the mean square of the ve-
locity fluctuations, quantitatively describes the degree of agitation of the
system. According to kinetic theories (Jenkins and Savage, 1983; Savage,
1984; Goldhirsch, 2003), the inelastic collisions associated with the random
motion of the grains represent the main mechanism to dissipate the energy
of the system. From the Geotechnical viewpoint, under those conditions
(granular gaseous or collisional state), the force chains within the medium
forming the granular skeleton disappear.
There are several practical problems where the granular material encom-
passes a transition from a solid to a more gaseous state, suggesting therefore
that a collaboration between the two above mentioned communities would
be fruitful. For instance, the landslide risk evaluation requires to model both
the inception and the evolution of the gravitational collapse. The increasing
success of computational tools in handling large deformations (CITATION)
suggests that such an ambitious goal is now possible. This stimulates the
need for constitutive models of the mechanical response of granular mate-
rials under both quasi-static and collisional conditions. A first step is the
extension of the critical state concept, interpreted hereafter as a sort of limit
condition for the steady state at vanishingly small strain rate, by employing
the granular temperature as in di Prisco and Pisanò (2008), as an additional
state variable for the system. When the granular temperature, T , is large,
the stored energy of the system is prevalently kinetic; whereas, at small T ,
the stored energy of the system is mainly elastic. In this perspective, a re-
cent constitutive model (Berzi et al., 2011) for the granular material, valid
in both quasi-static and collisional conditions, is slightly modified, mechan-
ical interpreted in the light of visco-plasticity and parametrically discussed.
This paper wants to suggest a road map, allowing the Geotechnicians to
get outside from their “one-dimensional world” and discovering, as for the
inhabitants of Flatland in the well-known masterpiece of Abbott (1884), a
“marvelous” multi-dimensional state-variable universe.

2 Theory

The Geotechnical community usually associates the concept of critical state
with a non-evolving state reached after a progressive increase of strain, at
a vanishingly small strain-rate. At the critical state, an ideal mechanism of
yielding is assumed to develop within the specimen: the external work is
totally dissipated by frictional processes at the contact level (disregarding
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both crushing and damage); the micro-structure does not evolve and, conse-
quently, the void index, e, remains constant (i.e., segregation is inhibited).
Focusing on triaxial tests (recently also by means of distinct element numeri-
cal simulations, Thornton and Zhang, 2003), Geotechnicians have tradition-
ally defined the locus of the critical state using the void index, the Terzaghi
(CITATION) effective pressure and the deviator (defined as the difference
between the axial and radial stress). Conversely, only few works have dealt
with simple shear flows (Fig. 1), which instead represents the most studied
configuration in determining the rheology of granular gases (Bagnold, 1954;
GDR-MiDi, 2004; da Cruz et al., 2005; Mitarai and Nakanishi, 2007).

Figure 1: Simple shear flow configuration.

Limiting the analysis, for sake of simplicity, on the homogeneous simple
shear of an assembly of identical, dry spheres of diameter d, the vari-
ables governing the problem are the shear stress τ , the normal stress in
the transversal direction, σ, the void index, or alternatively, the concen-
tration ν = 1/(1 + e), the shear strain, the strain rate γ̇ and the granular
temperature T . In the realm of Geotechnique, the strain rate is usually
taken to be zero, and therefore disregarded, and the granular temperature
is ignored. In the realm of granular flows, the shear strain is infinite, as
for classic fluids, therefore not influencing the problem. In our view, the
two realms are strictly connected, and the critical state, for which the shear
strain is infinite and both the strain rate and the granular temperature are
zero, represents the boundary between them.
Several authors (Savage, 1998; Johnson and Jackson, 1987, 1990; Lee and Huang,
2010; Berzi et al., 2011) have suggested to model the stresses in granular
materials as the linear combination of two contributions:

σ = σq + σc,

τ = τq + τc.
(1)

Here and in what follows, the subscript q (quasi-static) and c (collisional)
refer to quantities associated with enduring, frictional contacts of particles
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involved in force chains (soil skeleton) and nearly instantaneous collisions,
respectively. In steady, simple shear flows in absence of gravity, both the
shear and the normal stress are constant in the flow. Also the granular
temperature is constant, so that the flux of fluctuating energy of the particles
is zero (Mitarai and Nakanishi, 2007). Hence, the balance of fluctuating
energy reduces to (Jenkins, 2007; Berzi et al., 2011)

τcγ̇ = Γ, (2)

where the term on the left hand side represents the production of fluctuating
energy and Γ is the rate of energy dissipation in collisions. Unlike suggested
in other works (Lee and Huang, 2010), enduring contacts among particles in
force chains cannot produce fluctuating energy so that only the collisional
component of the shear stress is present in Eq. (2).

2.1 Quasi-static contribution

The quasi-static component of the shear stress is assumed to be proportional
to the quasi-static component of the normal stress through the tangent of
the critical friction angle φc, (Schofield and Wroth, 1968; Muir Wood, 2004):

τq = σq tanφc. (3)

The friction angle φc is a function of both the inter-particle friction coeffi-
cient µ and the simple shear constraints (di Prisco and Pisanò, 2011).
For dimensional reasons, the constitutive relation for the normal stress reads

σq = f0
K

d
(4)

where the particle stiffness K is equal to πdE/8 in the case of linear elastic
contacts (Ji and Shen, 2008), with E the Young’s modulus, and f0 is solely
a function of the concentration.
The function f0 must vanish when the concentration is equal to the random
loose packing value, νrlp, the minimum concentration at which a disordered
packing exists (Song et al., 2008). At the random loose packing, the quasi-
static normal stress is zero, and the granular material undergoes a phase
transition to a purely collisional regime. The concentration at random loose
packing is a decreasing function of the inter-particle friction coefficient µ
(Song et al., 2008; Silbert, 2010). For frictionless particles, i.e., µ = 0, νrlp
coincides with the random close packing, νrcp = 0.636, the densest possible
disordered packing of identical spheres (Song et al., 2008). On the other
hand, f0 must diverge at another critical value, νs, at which the force chains
span the entire domain and a shear rigidity develops (Jenkins and Berzi,
2010). Therefore, we take

f0 = max

(

a
ν − νrlp
νs − ν

, 0

)

, (5)
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where a is a dimensionless material coefficient (Berzi et al., 2011).
Experimental investigations on the critical state of identical spheres are
though rare. To our knowledge, only Wroth (1958) performed experiments
on the critical state of 1 mm stainless steel spheres (K = 8.25 · 107 Pa m)
using a shear cell (Muir Wood, 2007). The experiments confirm that the
ratio of τq to σq is constant and that f0 is a unique function of the con-
centration. The solid line in Fig. 2(a) represents the theoretical expression
of Eq. (5), with νs = 0.619, νrlp = 0.598 and a = 1.8 · 10−6, obtained from
linear regression. The data of Fig. 2(a) are plotted in terms of f0 against
void index in Fig. 2(b).
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Figure 2: Experimental (cricles, after Wroth, 1958) and theoretical (solid
line) coefficient f0 for steel spheres as function of (a) concentration and (b)
void index.

2.2 Collisional contribution

The constitutive relations for the collisional stresses and the rate of dissi-
pation of fluctuating energy are those proposed by Garzó and Dufty (1999),
as modified by Jenkins and Berzi (2010),

σc = ρpf1f4T, (6)

τc = ρpdf2f4T
1/2γ̇, (7)

and

Γ = ρp
f3
L
f4T

3/2. (8)

The coefficients f1, f2 and f3 are reported in Tab. 1. There, ǫ is taken to
be an effective coefficient of restitution that depends on the normal coeffi-
cient of restitution (ratio of pre to post collisional relative velocity between
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f1 = 4νGF

f2 =
8J

5π1/2
νG

f3 =
12

π1/2

(

1− ǫ2
)

νG

G = νg0

g0 =















(2− ν)

2 (1− ν)3
ν ≤ 0.49

5.69(νs − 0.49)

νs − ν
ν > 0.49

F =
1 + ǫ

2
+

1

4G

J =
1 + ǫ

2
+

π

32

[5 + 2(1 + ǫ)(3ǫ− 1)G] [5 + 4(1 + ǫ)G]
[

24− 6 (1− ǫ)2 − 5(1− ǫ2)
]

G2

L

d
= max

[

1,

(

1

2
c
G1/3

T 1/2
dγ̇

)]

Table 1: List of expressions for the collisional contribution to the stresses.

colliding particles in the normal impact direction), the tangential coefficient
of restitution in a sticking collision, and the Coulomb friction coefficient
that characterizes sliding collisions (Jenkins and Zhang, 2002). In Tab. 1,
g0 is the radial distribution function. For concentration higher than 49%,
we adopt the expression of g0 suggested by Torquato (1995), and identify
the singularity as νs. In the elastic limit, i.e., when ǫ = 1, νs equals νrcp
(Torquato, 1995). In Eq. (8), L is the correlation length, accounting for the
decrease in the collisional energy dissipation due to the correlated motion
of particles that is likely to occur when the flow is dense (Jenkins, 2006,
2007; Jenkins and Berzi, 2010). In its expression, reported in Tab. 1, c is a
dimensionless material coefficient of order unity.
The coefficient f4 in Eqs. (6)-(8), not present in the constitutive relations
of Jenkins and Berzi (2010), takes into account the influence of the particle
stiffness on the collisions. Following Hwang and Hutter (1995),

f4 =

[

1 + 2
d

s

(

ρpT

E

)1/2
]

−1

. (9)

where s is the mean separation distance among particles. At equilibrium,
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the latter can be identified as the mean free path (mean distance traveled by
a particle between two successive collisions), i.e., as the product of the mean
fluctuating velocity and the mean collision interval. Hence, in the context
of classic kinetic theories (Chapman and Cowling, 1970),

s =

√
2

12

d

G
. (10)

Using Eqs. (1), (4) and (6),

T =
σ − f0K/d

ρpf1f4
. (11)

With this and Eq. (9),

1

f4
− 2

d

s

√

π

8f1

(

σd

K
− f0

)

1√
f4

− 1 = 0, (12)

that gives

f4 =
2

2 +A+
√
A2 + 4A

, (13)

where

A =
36πG2

f1

(

σd

K
− f0

)

. (14)

As expected, f4 tends to one as K tends to infinity.

2.3 Constitutive model

By substituting Eqs. (7) and (8) into (2), and using the constitutive expres-
sion for L of Tab. 1, the granular temperature results an algebraic function
of the shear rate,

T = d2f5γ̇
2 (15)

with

f5 =
L

d

f2
f3

, (16)

and

L

d
= max



1,

(

c2G2/3f3
4f2

)1/3


 . (17)

Using Eq. (15) into Eqs. (6) and (7), the expressions for the total stresses
in steady, simple shear flows read















σ =
K

d
f0 + ρpd

2f1f4f5γ̇
2 (18a)

τ =
K

d
f0 tanφc + ρpd

2f2f4f
1/2
5 γ̇2, (18b)
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Eqs. (18) can be written as























1− K

σd
f0 −

γ21
γ22

( τ

σ
− tanφc

)

= 0 (19a)

τ

σ
− tanφc −

t2m
γ21

γ̇2 = 0 (19b)

where tm = d (ρpν/σ)
1/2 is the microscopic time scale associated with the

rearrangement of the particles (GDR-MiDi, 2004), and

γ1 =





ν

f4

(

f2f
1/2
5 − tanφcf1f5

)





1/2

,

γ2 =

[

ν

f1f4f5

]1/2

.

(20)

Eq. (19b) provides

γ̇ =
γ1
tm

( τ

σ
− tanφc

)1/2
, (21)

that can be interpreted, in the visco-plastic framework, as

γ̇ = γ̃Φ (F) , (22)

where Φ (F) is the viscous nucleus function of the yield locus F (Perzyna,
1966). In this case,

Φ (F) = (F)1/2 , (23)

and
F =

τ

σ
− tanφc. (24)

In Eq. 22, γ̃ is the fluidity parameter,

γ̃ =
γ1
tm

, (25)

that is not constant, unlike assumed in previous works (CITARE!!).

3 Discussion and results

The condition that the normal stresses of granular material must always be
positive implies, from (18a),

1− K

dσ
f0 ≥ 0. (26)
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Given the value of σ, this condition reads

ν ≤ νm (27)

where
νm =

aνrlp
a+ σd/K

+
νs

1 + a(σd/K)−1
. (28)

For large values of σd/K, νm approaches νs; on the other hand, νm tends to
νrlp when σd/K is small.
Fig. 3 shows the qualitative phase diagram on the plane µ−ν for the steady,
simple shear flow of inelastic spheres, i.e., ǫ < 1 and νs < νrcp.

ν
rlp

µ
0

ν
rcp

ν
s

quasi-static

+ collisional

ν
m

ν

collisional regime

Figure 3: Phase diagram for the steady, simple shear flow of inelastic spheres.

For a given values of the inter-particle friction µ, the concentration decreases
as the shear rate increases (the maximum value is when γ̇ = 0, i.e., at the
critical state, when the collisional stresses vanish). For small values of µ,
νrlp is greater than νs (here assumed to be constant, in absence of clear
evidences of its possible dependence on µ), so that the quasi-static stresses
are zero: the maximum concentration therefore coincides with νs and the
steady, simple shear flow is always in the collisional regime. At larger µ,
νrlp is lower than νs: the concentration at the critical state is νm, and quasi-
static and collisional stresses coexist in the range between νrlp ≤ ν ≤ νm.
At the value of γ̇ which corresponds to a concentration equal to νrlp, the
quasi-static stresses vanish and the material undergoes a phase transition
to the collisional regime. The range of coexistence of quasi-static and colli-
sional stresses depends on the ratio σd/K, which affects the value of νm. In
particular, for small values of σd/K, i.e., small values of the total normal
stress or large values of the particle stiffness, νm approaches νs, as already
mentioned, thus reducing the range of influence of the quasi-static stresses
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on the flow.
Physical and numerical experiments on steady, simple shear flows can be
performed (i) by imposing the normal stress, and measuring the concen-
tration (or alternatively the void index) and the shear stress as functions
of the shear rate (pressure-imposed); (ii) by imposing the concentration
(void index), and measuring the normal and shear stress as functions of the
shear rate (concentration-imposed). The results of the two configurations are
equivalent, if dimensionless quantities are employed (da Cruz et al., 2005).
Nonetheless, here we will apply our model to pressure-imposed flows, more
common in the Geotechnical community.
The model parameters which affect the constitutive relations (19) can be
subdivided into (i) micro-mechanical parameters, characteristics of the sin-
gle particle (i.e., ρp, d, K, µ and ǫ); (ii) macro-mechanical parameters, char-
acteristics of the “continuum” medium (i.e., νrlp, νs, tanφc, a and c). As
previously mentioned, micro and macro-mechanical parameters are related
to each other: the inter-particle friction coefficient affects the concentration
at random loose packing and the critical friction angle, and the coefficient of
collisional restitution influences the concentration at which the shear rigid-
ity develops. Also, ǫ and µ are not, in principle, totally independent.
Here, the predictions of the model for sand (d = 1 mm) are shown (Fig. 4).
Unfortunately, there are not enough data on steady, simple shear flows of
sand to infer the values of all the above mentioned parameters. Whenever
necessary, we make use of values appropriated for other types of granu-
lar material, assumed sufficiently close to those for sand. Hence, we take:
ρp = 2600 kg/m3; K = 2.8 ·107 Pa m, from the Young’s modulus for quartz;
ǫ = 0.6 and c = 0.5, appropriated for glass spheres (Jenkins and Berzi,
2010); a = 1.8×10−6, and νs = 0.619, from Wroth’s experiments on stainless
steel spheres (see section 2.1); tanφc = 0.5, the tangent of the angle of repose
obtained by Forterre and Pouliquen (2003) for 0.8 mm sand; νrlp = 0.55 as
appropriated for very frictional particles (Silbert, 2010).
Fig. 4a shows that, at the lowest values of the applied normal stress, the
stress ratio τ/σ increases with the shear rate when the void index is less than
one, and decreases when e exceeds unity (purely collisional regime). We refer
to the latter condition as a “strain rate softening” (di Prisco et al., 2000),
although the reduction in the stress ratio for increasing values of γ̇ is not as-
sociated with an evolutionary process, but with a succession of steady states.
This strain rate softening in the purely collisional regime has been confirmed
by numerical simulations on unbounded shear flows (Mitarai and Nakanishi,
2007). On the other hand, when the applied normal stress is sufficiently
large, the present theory predicts an additional strain rate softening at val-
ues of e less than one, when both collisional and quasi-static stresses coexist
(Fig. 4a).
Fig. 5 shows the results of the present theory when the quasi-static stresses
are ignored. This permits to emphasize some key predictions of the theory
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Figure 4: Theoretical (a) stress ratio and (b) void index as functions of the
shear rate for 1 mm sand, at different values of the applied normal stress:
σ = 10 Pa, dashed lines; σ = 103 Pa, dotted lines; σ = 105 Pa, dash-dotted
lines; σ = 107 Pa, solid lines.
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Figure 5: Same as in Fig. 4, but for the fact that the quasi-static stresses
are ignored (purely collisional model).

that can be tested in numerical simulations. First, the value of the void
index for γ̇ → 0 would be independent on σ in a purely collisional model.
Second, a purely collisional model cannot predict the asymptotic approach
of the stress ratio to the critical friction angle for γ̇ → 0 (da Cruz et al.,
2005).
The condition for the presence of the strain rate softening in the regime
when both quasi-static and collisional stresses coexist (Fig. 4a) can be de-
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rived from Eq. (21). Indeed, for the shear rate being a real number,

τ/σ − tanφc

f4

(

f2f
1/2
5 − tanφcf1f5

) > 0. (29)

Hence, the strain rate softening (τ/σ < tanφc) can occur if

f2f
1/2
5 − f1f5 tanφc < 0, (30)

given that f4 is always positive. By using the expressions of Tab. 1, Eq. 30
gives

ν > ν∗, (31)

where

ν∗ = νs
B9(tanφc)

−9

B9(tanφc)−9 + 5.69 (νs − 0.49)
, (32)

with

B =

[

48

5π(1 + ǫ)2

]1/2
[

(

1− ǫ2
)2

J4

15c2

]1/6

, (33)

where J is calculated from Tab. 1 in the dense limit, i.e., for G → ∞
(Jenkins and Berzi, 2010). If νm is larger than ν∗, there is a “strain rate
softening” in the range of concentration between ν∗ and νm. By using Eq. 28,
this corresponds to

σ > a
(ν∗ − νrlp)

(νs − ν∗)

K

d
. (34)

Fig. 6 illustrates the dependence of νm on σ; there, the gray area represents
the fulfillment of conditions (31) and (34).

For ν > ν∗, the visco-plastic interpretation of the model (Eq. 21) still holds,
if one allows the fluidity parameter to be an imaginary number. The depen-
dence of the fluidity parameter on the void index for different values of σ
is depicted in Fig. 7. The gray area represents the range of void index for
which γ̃ is imaginary.
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(dashed line), σ = 103 Pa (dotted line), σ = 105 Pa (dash-dotted line),
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4 Concluding remarks

This work has provided a theoretical framework, in which both standard
Geotechnical constitutive models, based on the critical state theory, and ki-
netic theories of granular gases can be reconciled. In particular, the steady
state condition of a granular material (sand) under simple shear has been
analyzed using a constitutive model recently proposed by the authors, where
both enduring contacts among particles involved in force chains and nearly
instantaneous collisions are considered. The interpretation of the constitu-
tive model in the light of standard visco-plasticity is a first step towards an
evolving constitutive model capable of describing the mechanical behaviour
of granular material under both solid-like and fluid-like conditions. Taking
into account the stiffness of the particles permits to highlight the role of the
applied normal stress on the dependence between the stress ratio and the
void index. Indeed, for large values of the normal stress and small values
of the shear rate, the model predicts the appearance of a sort of strain rate
softening, i.e., a reduction of the stress ratio when increasing the shear rate,
at low values of the void index. This result, as well as other assumptions
made in building the model (e.g., the fact that both the collisional and
the quasi-static normal stress diverge at the same concentration), although
physically sound, require to be tested against physical experiments and/or
numerical simulations.
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5 List of symbols

a material coefficient [ - ]

A auxiliary function [ - ]

B auxiliary function [ - ]

c material coefficient [ - ]

d particle diameter [m]

e void index [ - ]

E Young’s modulus [Pa]

fi i = 0 to 5, auxiliary functions [ - ]

F yield locus [ - ]

F auxiliary function [ - ]

g0 radial distribution function [ - ]

G auxiliary function [ - ]

J auxiliary function [ - ]

K particle stiffness [Pa m]

L correlation length [m]

s mean separation distance [m]

tm microscopic time scale of particle rearrange-
ment

[s]

T granular temperature [m2/s2]

γ̇ shear rate [1/s]

γ̃ fluidity parameter [1/s]

γ1, γ2 auxiliary functions [ - ]

Γ rate of dissipation of fluctuating energy [Pa/s]

ǫ effective coefficient of collisional restitution [ - ]

ν concentration [ - ]

ν∗ minimum concentration for having strain
rate softening when quasi-static stresses are
present

[ - ]

νm maximum concentration in steady, simple
shear flows

[ - ]

νrcp concentration at random close packing [ - ]

νrlp concentration at random loose packing [ - ]

νs concentration at which the shear rigidity de-
velops

[ - ]

ρp particle density [kg/m3]

σ total normal stress [Pa]
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σc collisional normal stress [Pa]

σq quasi-static normal stress [Pa]

τ total shear stress [Pa]

τc collisional shear stress [Pa]

τq quasi-static shear stress [Pa]

φc critical friction angle in simple shear condi-
tions

[ - ]

µ inter-particle friction coefficient [ - ]

Φ viscous nucleus [ - ]
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